Depositing CeO2 Nanoparticles on Carbon Cloth

2022-08-20 23:17:19 By : Ms. Daisy Zhang

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Chinese scientists have demonstrated an innovative one-step approach for synthesizing cerium oxide for use in high-performance supercapacitors. Their findings have been published online in the Journal of Energy Storage. 

Study: A molten salt route to binder-free CeO2 on carbon cloth for high performance supercapacitors . Image Credit: ustas7777777/Shutterstock.com

The environmental damage caused by fossil fuel use has become apparent over recent decades, facilitating the urgent need to develop reliable and efficient alternative energy solutions. To address the current challenges with climate change and generate renewable energy, several technologies such as solar, wind, biomass, hydroelectric, and geothermal energy generation have been developed.

Efficient energy generation requires efficient energy storage to provide optimal performance. Batteries, fuel cells, and supercapacitors have been widely explored in recent studies to provide the energy storage demands of renewable power generation technologies.

Supercapacitors have demonstrated promise as competitive candidates for energy storage needs due to their long cycle stability, high power density, and safety. The optimal performance of supercapacitor technologies is largely dependent on the selection of appropriate materials. Electrodes play a key role in the electrochemical performance of supercapacitors, and studies have evaluated several high-performance electrode materials in recent years.

Amongst the various materials explored for use as supercapacitor electrode materials, rare earth oxides have demonstrated themselves to have promise in recent studies. Their 4f electronic structure and various valence states make them promising candidates for this key technological application.

RuO2 has been widely used as an electrode material due to its adequate specific capacitance. However, the commercial viability of this rare earth oxide is limited by challenges with cost, lack of abundance, and relative toxicity. For this reason, scientists have searched for alternative materials for use in supercapacitor electrodes.

Cerium oxide (CeO2) is a low-cost, abundant, eco-friendly, and chemically stable alternative material. Cerium is the most abundant of all rare earth elements, with a comparable abundancy to copper. The ability of cerium ions to switch between different species makes CeO2 an efficient electrode material.

Some studies in recent years have demonstrated excellent rate capability by preparing multi-porous CeO2 nanoparticles using approaches such as hydrothermal methods and precipitation. However, technical challenges still exist with using this rare earth oxide due to low electrical conductivity, which limits electrochemical performance. This causes problems with poor cycle life and low specific capacitance.

The issues with electrochemical performance can be overcome by combing cerium oxide with conductive materials and organic binders. However, using organic binders presents further challenges due to ion transfer resistance between substrates and active materials. Furthermore, active sites are blocked by binders and conductive agents, negatively affecting cycling stability and rate performance.

The authors have developed a facile and innovative one-step molten salt method for synthesizing CeO2 nanoparticles. The nanoparticles are grown on a carbon cloth and possess abundant surface oxygen vacancies. No additional treatments were employed in this method, and nanoparticles were obtained at 380oC within one minute. The electrode’s structure is CeO2@CC.

Previous studies have indicated the suitability of carbon cloth as a conductive substrate due to properties such as electrochemical stability, enhanced stability, and superior conductivity. However, previous studies have used multi-step and time-consuming synthetic preparation routes, limiting their commercial viability.

Electrochemical tests were performed in the study, demonstrating high capacitance values of the prepared cerium oxide/carbon cloth substrate electrodes of up to 811.5 mF cm-2. 86.3% capacitance retention after 10,000 charge and discharge cycles was observed at 5 mA cm-2.

An asymmetric supercapacitor was prepared in the research employing CeO2@CC as the negative electrode and Co3O4@CC as the positive electrode. The supercapacitor possesses an energy density of 0.11 mWh cm-2, its power density is 3.25 mW cm-2. After 5,000 cycles, 74.3% of the supercapacitor’s initial density was retained.

Enhanced electrical conductivity and improved structural stability of the material was due to tight adhesion and uniform distribution of cerium oxide on the conductive carbon cloth substrate. The superior performance of the prepared electrode materials shows vast promise for the future of supercapacitor research.

The study has demonstrated the efficient and facile production of CeO2-based electrodes for advanced, high-performance supercapacitors to meet the demands of the renewable energy sector. Using the molten salt method in the research, the need for multi-step preparation with extra treatments is negated, overcoming the currently reported challenges with preparing rare earth oxide supercapacitor electrodes.

There is a pressing need for energy storage devices that provide optimal performance if the world is to reduce its reliance on fossil fuels and mitigate the worst effects of climate change. This research has provided an important advance in the design of supercapacitor electrode materials to meet this challenge.

More from AZoM: How is 3D Printing Changing the Textile Industry?

Jiang, J-Z et al. (2022) A molten salt route to binder-free CeO2 on carbon cloth for high performance supercapacitors Journal of Energy Storage 55 Part A, 105451 [online] sciencedirect.com. Available at:

https://www.sciencedirect.com/science/article/abs/pii/S2352152X22014438

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Reg Davey is a freelance copywriter and editor based in Nottingham in the United Kingdom. Writing for News Medical represents the coming together of various interests and fields he has been interested and involved in over the years, including Microbiology, Biomedical Sciences, and Environmental Science.

Please use one of the following formats to cite this article in your essay, paper or report:

Davey, Reginald. (2022, August 19). Depositing CeO2 Nanoparticles on Carbon Cloth. AZoM. Retrieved on August 20, 2022 from https://www.azom.com/news.aspx?newsID=59804.

Davey, Reginald. "Depositing CeO2 Nanoparticles on Carbon Cloth". AZoM. 20 August 2022. <https://www.azom.com/news.aspx?newsID=59804>.

Davey, Reginald. "Depositing CeO2 Nanoparticles on Carbon Cloth". AZoM. https://www.azom.com/news.aspx?newsID=59804. (accessed August 20, 2022).

Davey, Reginald. 2022. Depositing CeO2 Nanoparticles on Carbon Cloth. AZoM, viewed 20 August 2022, https://www.azom.com/news.aspx?newsID=59804.

Do you have a review, update or anything you would like to add to this news story?

At the Advanced Materials Show 2022, AZoM caught up with the CEO of Cambridge Smart Plastics, Andrew Terentjev. In this interview, we discuss the company's novel technologies and how they could revolutionize how we think about plastics.

At the Advanced Materials Show in June 2022, AZoM spoke with Ben Melrose from International Syalons about the advanced materials market, Industry 4.0, and efforts to move toward net-zero.

At the Advanced Materials Show, AZoM spoke with Vig Sherrill from General Graphene about the future of graphene and how their novel production technique will lower costs to open up a whole new world of applications in the future.

This product profile describes the Flex Raman Catalog.

This is the full list of rotary evaporators offered by IKA Werke.

This product from Alicona features Cobots, which consist of a collaborative 6-axis robot and optical 3D measuring sensors to provide user-friendly measurement automation.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022